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Overview

1. ML in the Atmospheric Sciences

2. Random Forests for snowfall 
retrievals

3. Neural Networks for precipitation 
retrievals

4. Generative techniques for 
resolving radar blind zones

5. Towards model interpretability
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1
Machine Learning in 
the Atmospheric Sciences
How far have we come, what problems remain, and 
what can we do about them?



1. Earth ML
• Machine learning (ML) is an 

Artificial intelligence (AI) subset 
that allows machines to learn 
from data and make decisions

• ML has a deep history in the 
Geosciences. Remote sensing 
was an early adopter, along with 
applications in geomorphology, 
solid Earth geoscience, 
hydrogeophysics, seismology, 
and geochemistry

• For the purposes of this talk we 
will focus on one component: the 
Atmosphere 
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Adapted from
(Sun et al., 2022)



(Chase et al., 2022)

1. Origins

(Dramsch et al., 2020)

• The application of ML to 
problems in the Atmospheric 
Sciences is not novel

• The lack of computing 
resources, networking 
infrastructure and available 
global datasets were 
historically major limiting 
factors

• With improvements in both 
software and hardware 
capabilities, coupled with large 
observational datasets from 
reanalysis and remote sensing, 
ML has surged in popularity

Cyclicity of sediment deposits 
(Preston and Henderson, 1964)



1. ML Challenges

Problem Identification Model 
Development

Deployment & 
Maintenance

Integration & 
Decision Making

• What are the right 
questions to ask?

• Would a simpler 
method be sufficient?

• Are current AI 
methods mature 
enough for these 
problems?

• Curating training data
• Model architecture
• Hyperparameter 

optimization
• Uncertainty 

quantification
• Robustness

• Real-time 
processing and 
associated costs

• Operational 
management

• Permissions
• Open/closed source

• Integration with 
current techniques

• Ethical concerns
• AI Policies
• Trust (Mechanistic 

Interpretability)

Adapted from
(Sun et al., 2022)



1. Towards Interpretability

• Many ML models are often considered black 
boxes as their inner workings are opaque to the 
observer

• This can lead to issues of trust, as biases or 
errors in the model decision making process 
may be difficult to identify

• This is especially relevant in Atmospheric 
Science, as models impact the daily lives of 
millions of people

• Explanatory techniques (e.g., LIME, SHAP) 
exist, and can help explain some NN behavior. 
But a method for definitive, comprehensive 
interpretable understanding remains to be seen (Conor O'Sullivan, 2020)

My ML Model

Let’s focus here for this talk



A Centimeter-Wavelength 
Snowfall Retrieval Algorithm 
Using Machine Learning

2

What retrieval accuracy can be achieved using a 
supervised machine learning algorithm (i.e., a random 
forest) when trained on surface radar observations?
https://doi.org/10.1175/JAMC-D-22-0036.1

(McGill, 2010)

https://doi.org/10.1175/JAMC-D-22-0036.1


Random
Forest

Data

Idea

2. GCPEx

(King et al., 2022)

• Vertical radar data was collected from a GPM ground validation campaign

• This and collocated in situ snowfall data was used to train a random forest



(2n+1, m)

GCPEx VertiX Radar – Feb. 24, 2012 

221 bins

Bootstrap sampling to 
generate K decision 

trees of max depth 10

Surface snow 
accumulation (mm)

2. Random Forest Retrieval



2. RF Explainability
• The RF calculates feature 

importance (in regression 
models) by averaging the 
decrease in mean squared 
error (MSE) across all trees 
when a feature is used for 
splitting

• It measures how much each 
feature contributes to the 
predictive power of the model 
by comparing the 
performance of trees with and 
without the feature

• Issue of “Can't see the forest 
for the trees”

(Tom Grigg, 2019)



Reflectivity Temperature

2. Feature Importance

• We note a spike in reflectivity importance in the lowest 2 km of the atmosphere (this will be important later!)



• With access to a wider observational 
network, could we train a deep neural 
network to derive a novel, high accuracy, 
precipitation retrieval?

(Mekis et al., 2018)(Alom et al., 2019)

2. Deep Learning



3
DeepPrecip: A deep neural 
network for precipitation 
retrievals
Can we generalize the previous model to new regional 
climates? Does the different architecture provide new 
insights into retrieval behavior?
https://doi.org/10.5194/amt-15-6035-2022

https://doi.org/10.5194/amt-15-6035-2022


• Data collected from 9 
sites spread across the 
northern hemisphere

• Each site has a 
collocated MRR and 
Pluvio gauge

• Key: observations from 
multiple regional 
climates and periods

(King et al., 2022)

3. DeepPrecip



• What makes DeepPrecip different from the previous RF?
• DeepPrecip is a 1D convolutional neural network with two primary 

system components responsible for:
1. Feature Extraction
2. Snowfall Regression

(Chase et al., 2022)

3. Model Architecture
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3. Feature Extraction



3. SHapley Additive exPlanations (SHAP)

(Lundberg et al., 2017)

• Feature attribution is a group of explainability techniques used to explain how machine learning 
models make decisions (e.g., SHAP or LIME)

• At a high level, the Shapley value is computed by carefully perturbing input features and seeing how 
changes to the input features correspond to the final model prediction

• The Shapley value of a given feature is then calculated as the average marginal contribution to the 
overall model score



3. SHAP Feature Importance
• We broke the 

data up into 
groups using a 
standard k-
means 
approach

• Note that darker 
colors represent 
a higher 
”importance 
score”

• We once again 
see that the 
region below 2 
km is very 
important in 
retrieval 
accuracy!
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Development of a full-scale 
connected U-Net for reflectivity 
inpainting in spaceborne radar 
blind zones
What role do generative models have in improving known 
issues from satellite-derived remote sensing precipitation 
estimates in the lowest 2 km of the atmosphere?
https://doi.org/10.1175/AIES-D-23-0063.1

(NASA, 2019)

https://doi.org/10.1175/AIES-D-23-0063.1


(Maahn et al., 2014)

(Pettersen et al., 2020)

The CloudSat Cloud Profiling Radar 
(CPR) allows us to look inside of 
clouds to view hydrometeor activity 

(King et al., 2019)

Deep Shallow

Shallow Snowfall

Virga

4. The Radar Blind Zone



KAZR-CLOUDSAT
This VAP applies reflectivity offsets to 
surface KaZR observations to align 
the reflectivities more closely with 
those observed by CloudSat (Kollias 
et al., 2019)

ERA5 
Collocated atmospheric data from 
ERA5 is also aligned to provide the 
models with additional context

• Data comes from two Arctic 
locations along the northern  
Alaskan coast (NSA & OLI)

• We focused on using cold 
season observations when 
temperatures were below 2°C

4. Training Data



4. U-Net Architecture

(King et al., 2024)



• Five models are compared in this 
analysis including 2 traditional 
linear techniques and 3 CNN-
based approaches

• This allows us to assess 
performance using both “simple” 
and “complex” inpainting schemes

4. Models



Truth Predicted

4. Inpainting Results



• How is my model making these choices? Can we learn something about the internal decision making 
process like we did with the RF and DeepPrecip?

• How important are the ERA5 variables? Do they add value over just using the KaZR?

4. Drop Channel Importance



Example Input U-Net Encoder

e1

e2

e3

e4

e5

• Using this U-Net architecture, the model 
appears to learn to relate features in cloud aloft 
to blind zone reflectivity structures

• Cloud edges, blind zone threshold reflectivity, 
cloud gaps and reflectivity gradients are 
common structures identified as being 
important contributors to inpainting accuracy

4. Feature Maps



Example Input U-Net Encoder
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• Using this U-Net architecture, the model 
appears to learn to relate features in cloud aloft 
to blind zone reflectivity structures

• Cloud edges, blind zone threshold reflectivity, 
cloud gaps and reflectivity gradients are 
common structures identified as being 
important contributors to inpainting accuracy

4. Feature Maps



• By examining a handful of saliency maps, we gain some insight into regions of importance at inference 
which we can then attempt to connect back to physical processes

KaZR ERA5Saliency Maps

• The most important regions tend to be near the blind zone threshold or in reflectivity gradients

• Areas without reflectivity information also appear as important in data sparse cases

• ERA5 information near the tropopause appears as a halo of significance in the 3+_5 model

4. Saliency Maps



5
Future Concepts for 
Interpretable Machine Learning
Are we able to distinguish highly interpretable features
from a suite of simple toy precipitation models?

(Olah et al., 2017)



5. Neural Networks are Complex!



Hooke’s Micrographia (1666)

• Many pivotal moments in the history of Science 
have been instances where Science “zoomed in”

5. Let’s Zoom In! The Neuron



• Many neurons are polysemantic in 
nature and respond to mixtures of 
seemingly unrelated inputs

• This leads to network superposition 
where a neural network represents 
more independent "features" of the 
data than it has neurons

5. Polysemanticity and Superposition

(Olah et al., 2017)

(Olah et al., 2017)

Monosemantic Neuron

Polysemantic Neuron



5. Future: Finding Physical Circuits

4. Enhanced NN interpretability and 
trust in the Atmospheric Sciences?



5. More Information
https://distill.pub https://transformer-circuits.pub

https://distill.pub/
https://transformer-circuits.pub/


Summary

Model trust continues to 
be a big issue in the 
application of ML in the 
Atmospheric Sciences

We have examined the 
behavior of multiple ML 
models related to clouds 
and precipitation

There are new, exciting 
methods of mechanistic 
interpretability being 
developed and refined

Challenges Remain Model Development Interpretability



Questions?

NASA NIP Grant # 80NSSC22K0789

Thank You


