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Machine Learning in
the Atmospheric Sciences

How far have we come, what problems remain, and
what can we do about them?




1.

Earth ML

Machine learning (ML) is an
Artificial intelligence (Al) subset
that allows machines to learn
from data and make decisions

ML has a deep history in the
Geosciences. Remote sensing
was an early adopter, along with
applications in geomorphology,
solid Earth geoscience,
hydrogeophysics, seismology,
and geochemistry

For the purposes of this talk we
will focus on one component: the
Atmosphere
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1. ML Challenges

Global average surface temperature change
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1. Towards Interpretability

« Many ML models are often considered black
boxes as their inner workings are opaque to the
observer

« This can lead to issues of trust, as biases or
errors in the model decision making process
may be difficult to identify

« This is especially relevant in Atmospheric
Science, as models impact the daily lives of
millions of people

« Explanatory techniques (e.g., LIME, SHAP)
exist, and can help explain some NN behavior.
But a method for definitive, comprehensive
interpretable understanding remains to be seen

My ML Model

Input Black Box Output

Let’s focus here for this talk
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(Conor O'Sullivan, 2020)
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A Centimeter-Wavelength
Snowfall Retrieval Algorithm
Using Machine Learning

What retrieval accuracy can be achieved using a
supervised machine learning algorithm (i.e., a random
forest) when trained on surface radar observations?

https://doi.org/10.1175/JAMC-D-22-0036.1



https://doi.org/10.1175/JAMC-D-22-0036.1

Statejs

Vertical radar data was collected from a GPM ground validation campaign

* This and collocated in situ snowfall data was used to train a random forest
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2. Random Forest Retrieval

GCPEXx VertiX Radar — Feb. 24, 2012 |
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2. RF Explainability

The RF calculates feature
importance (in regression
models) by averaging the
decrease in mean squared
error (MSE) across all trees
when a feature is used for
splitting

It measures how much each
feature contributes to the
predictive power of the model
by comparing the
performance of trees with and
without the feature

Issue of “Can't see the forest
for the trees”
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2. Feature Importance

We note a spike in reflectivity importance in the lowest 2 km of the atmosphere (this will be important later!)



2. Deep Learning

o Wlth access tO a Widel’ Observational Meteorological Service of Canada
network, could we train a deep neural Sirface Poatherond SlEos new oo
network to derive a novel, high accuracy,
precipitation retrieval?
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DeepPrecip: A deep neural
network for precipitation
retrievals

Can we generalize the previous model to new regional
climates? Does the different architecture provide new

insights into retrieval behavior?
https://doi.org/10.5194/amt-15-6035-2022
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3. Model Architecture

What makes DeepPrecip different from the previous RF?

DeepPrecip is a 1D convolutional neural network with two primary

system components responsible for:

1. Feature Extraction
2. Snowfall Regression

Feature Extraction

weighted sum

Regression

activation

@7

(Chase et al., 2022)
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3. Feature Extraction

JOYCE MRR - Nov. 7 2016
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3. SHapley Additive exPlanations (SHAP)

» Feature attribution is a group of explainability techniques used to explain how machine learning
models make decisions (e.g., SHAP or LIME)

Output=0.4 Output=0.4
I
Age=65 — +0.4 Age =65
Sex=F — 03 _
Explanation =N sex=F

BP=180 — BP =180
BMI =40 — BMI = 40

Base rate = 0.1 Base rate = 0.1 (Lundbergetal., 2017)

« At a high level, the Shapley value is computed by carefully perturbing input features and seeing how
changes to the input features correspond to the final model prediction

« The Shapley value of a given feature is then calculated as the average marginal contribution to the
overall model score



3. SHAP Feature Importance

We broke the
data up into
groups using a
standard k-
means
approach

Note that darker
colors represent
a higher
“Importance
score”

We once again
see that the
region below 2
Km is very
important in
retrieval
accuracy!

Vertical Bin

29

All Profiles Trace Low Intensity Medium Intensity High Intensity
' - - I ‘ :::: 2.8
_— T W
‘ - | ] o— 1.8 6
= =
o _ 13 2
1 | O 9 3/
— B = 03

RFL DOV SPW TMP WVL RFL DOV SPW TMP WVL RFL DOV SPW TMP WVL RFL DOV SPW TMP WVL 'RFL DOV SPW TMP WVL
Feature Name

_ Trace Intensity Profiles (n = 372527

Low Intensity Profiles (n = 609863

Height (km)

Height (km)

220 -10 0 10 | 20 30 40 50 =20 -10 0 10 20
Reflectivity (dBZ) Reflectivity (dBZ)

30 40 50



Development of a full-scale
connected U-Net for reflectivity
inpainting Iin spaceborne radar
blind zones

What role do generative models have in improving known
issues from satellite-derived remote sensing precipitation
estimates in the lowest 2 km of the atmosphere?
https://doi.org/10.1175/AIES-D-23-0063.1
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4. The Radar Blind Zone

The CloudSat Cloud Profiling Radar
(CPR) allows us to look inside of
clouds to view hydrometeor activity

1s CloudSat Reflectivity Profile

Height (km)

80.133
Latitude

CloudSat Snowfall Rates

78.933

= 2.0,
= 155
5 Lo £
L 0.5
80.133 78.933 0.0
Latitude
30 CloudSat Surface Snowfall
£25
=20
£1.5
1.0
T 0.5
o« 0.0 | —t sl | o
81.668 81.074 80.133 78.933 77.548 76.034
Latitude

(King et al., 2019)
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4. Training Data
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4. U-Net Architecture
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4. Models

« Five models are compared in this Name
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4. Drop Channel Importance
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4. Feature Maps

* Using this U-Net architecture, the model
appears to learn to relate features in cloud aloft
to blind zone reflectivity structures

Example Input U-Net Encoder

el

e3

e4

* Cloud edges, blind zone threshold reflectivity,
cloud gaps and reflectivity gradients are
common structures identified as being
important contributors to inpainting accuracy



4. Feature Maps

* Using this U-Net architecture, the model
appears to learn to relate features in cloud aloft
to blind zone reflectivity structures

Example Input U-Net Encoder

* Cloud edges, blind zone threshold reflectivity,
cloud gaps and reflectivity gradients are
common structures identified as being
important contributors to inpainting accuracy



4. Saliency Maps

« By examining a handful of saliency maps, we gain some insight into regions of importance at inference
which we can then attempt to connect back to physical processes

3+ 5 Salienc Temperature Specific Humidity U-Wind V-Wind

KaZR Saliency Maps ERAS

« The most important regions tend to be near the blind zone threshold or in reflectivity gradients
« Areas without reflectivity information also appear as important in data sparse cases

« ERAS5 information near the tropopause appears as a halo of significance in the 3+_5 model
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Future Concepts for
Interpretable Machine Learnin

Are we able to distinguish highly interpretable features
from a suite of simple toy precipitation models?




5. Neural Networks are Complex!

Graphcore



5- Let,s ZOOm In! The Neuron activation

« Many pivotal moments in the history of Science Q E> j E> g

have been instances where Science “zoomed in”
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5. Polysemanticity and Superposition

« Many neurons are polysemantic in Monosemantic Neuron
nature and respond to mixtures of ’
seemingly unrelated inputs

» This leads to network superposition
where a neural network represents

more independent "features" of the _
. -
data than it has neurons -
- - Neuron 4b:409 Dataset examples for neuron 4b:409 (Olah et al., 2017)
-
HYPOTHETICAL DISENTANGLED MODEL _ = - ]
o - @ olysemantlc Neuron
e D -
< @
(€] @
e @
e o |
- - ’;
- - -
\ - -
OBSERVED - -
MODEL i, -
@~
@ 4e:55 is a polysemantic neuron which responds to cat faces, fronts of cars, and cat legs. It was

discussed in more depth in Feature Visualization [4]. (Olah et al., 2017)




5. Future: Finding Physical Circuits

1. Train MLP classifier

[1-3] hidden layers

2. Train SAE on MLP activations
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3. Interpret Sparse Dictionary Features

- Case-by-case analysis
- t-SNE/PCA
- Physical circuit identification

Hidden Layer e R™

Output Layer e R*

4. Enhanced NN interpretability and
trust in the Atmospheric Sciences?



5. More Information

https://distill.pub https://transformer-circuits.pub

Transformer Circuits Thread

A Transformer Circuits Thread

sept. 2, 2071 Understanding Convolutions on Articles
Graphs
Ameya Daigavane, Balaraman Ravindran, and FEBRUARY 2024

Gaurav Aggarwal

Understanding the building blocks and design choices Circuits Updates _ February 2024
of graph neural networks.

A collection of small updates from the Anthropic Interpretability Team.

Sept. 2, 2021 A Gentle Introduction to Graph
Neural Networks JANUARY 2024
Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and
Alexander B. Wiltschko Circuits Updates — January 2024
What components are needed for building learning A collection of small updates from the Anthropic Interpretability Team.

algorithms that leverage the structure and properties
of graphs?


https://distill.pub/
https://transformer-circuits.pub/

Summary

Challenges Remain

Model Development

Model trust continues to
be a big issue in the
application of ML in the
Atmospheric Sciences

We have examined the
behavior of multiple ML
models related to clouds
and precipitation

Interpretability

There are new, exciting
methods of mechanistic
interpretability being
developed and refined



Thank You

Questions?
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